30 research outputs found

    Enhancing Data Security by Making Data Disappear in a P2P Systems

    Get PDF
    This paper describes the problem of securing data by making it disappear after some time limit, making it impossible for it to be recovered by an unauthorized party. This method is in response to the need to keep the data secured and to protect the privacy of archived data on the servers, Cloud and Peer-to-Peer architectures. Due to the distributed nature of these architectures, it is impossible to destroy the data completely. So, we store the data by applying encryption and then manage the key, which is easier to do as the key is small and it can be hidden in the DHT (Distributed hash table). Even if the keys in the DHT and the encrypted data were compromised, the data would still be secure. This paper describes existing solutions, points to their limitations and suggests improvements with a new secure architecture. We evaluated and executed this architecture on the Java platform and proved that it is more secure than other architectures.Comment: 18 page

    Air pollution abatement performances of green infrastructure in open road and built-up street canyon environments – A review

    Get PDF
    Intensifying the proportion of urban green infrastructure has been considered as one of the remedies for air pollution levels in cities, yet the impact of numerous vegetation types deployed in different built environments has to be fully synthesised and quantified. This review examined published literature on neighbourhood air quality modifications by green interventions. Studies were evaluated that discussed personal exposure to local sources of air pollution under the presence of vegetation in open road and built-up street canyon environments. Further, we critically evaluated the available literature to provide a better understanding of the interactions between vegetation and surrounding built-up environments and ascertain means of reducing local air pollution exposure using green infrastructure. The net effects of vegetation in each built-up environment are also summarised and possible recommendations for the future design of green infrastructure are proposed. In a street canyon environment, high-level vegetation canopies (trees) led to a deterioration in air quality, while low-level green infrastructure (hedges) improved air quality conditions. For open road conditions, wide, low porosity and tall vegetation leads to downwind pollutant reductions while gaps and high porosity vegetation could lead to no improvement or even deteriorated air quality. The review considers that generic recommendations can be provided for vegetation barriers in open road conditions. Green walls and roofs on building envelopes can also be used as effective air pollution abatement measures. The critical evaluation of the fundamental concepts and the amalgamation of key technical features of past studies by this review could assist urban planners to design and implement green infrastructures in the built environment

    Context matters: co-creating nature-based solutions in rural living labs

    Get PDF
    The use of Nature-based Solutions (NBS), designed and implemented with participatory approaches, is rapidly increasing. Much use is being made of the Living Lab (LL) concept to co-create innovative NBS with stakeholders in a certain societal and environmental, real-life context. Most of the current research revolves around urban LLs, thus overlooking specificities of rural areas. Furthermore, the influence of the context itself on co-creation processes is insufficiently recognised, leaving challenges associated with co-creation such as stakeholder engagement unresolved. By exploring the co-creation processes in the LLs of the OPERANDUM project, this study identifies eighteen contextual factors shaping the co-creation processes of NBS within rural territories and provides associated recommendations. In addition, based on lessons learnt in the OPERANDUM project, we discuss the value of a relational place-based approach in LLs, suggesting that the co-creation process should be approached as a dynamic confluence of many interconnected contextual factors. We conclude that acknowledging the interconnections in co-creation in the real-life context of rural territories may increase the success and impact of the LL approach, and ultimately, the benefits of NBS

    An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards

    Get PDF
    To bring to fruition the capability of nature-based solutions (NBS) in mitigating hydro-meteorological risks (HMRs) and facilitate their widespread uptake require a consolidated knowledge-base related to their monitoring methods, efficiency, functioning and the ecosystem services they provide. We attempt to fill this knowledge gap by reviewing and compiling the existing scientific literature on methods, including ground-based measurements (e.g. gauging stations, wireless sensor network) and remote sensing observations (e.g. from topographic LiDAR, multispectral and radar sensors) that have been used and/or can be relevant to monitor the performance of NBS against five HMRs: floods, droughts, heatwaves, landslides, and storm surges and coastal erosion. These can allow the mapping of the risks and impacts of the specific hydro-meteorological events. We found that the selection and application of monitoring methods mostly rely on the particular NBS being monitored, resource availability (e.g. time, budget, space) and type of HMRs. No standalone method currently exists that can allow monitoring the performance of NBS in its broadest view. However, equipments, tools and technologies developed for other purposes, such as for ground-based measurements and atmospheric observations, can be applied to accurately monitor the performance of NBS to mitigate HMRs. We also focused on the capabilities of passive and active remote sensing, pointing out their associated opportunities and difficulties for NBS monitoring application. We conclude that the advancement in airborne and satellite-based remote sensing technology has signified a leap in the systematic monitoring of NBS performance, as well as provided a robust way for the spatial and temporal comparison of NBS intervention versus its absence. This improved performance measurement can support the evaluation of existing uncertainty and scepticism in selecting NBS over the artificially built concrete structures or grey approaches by addressing the questions of performance precariousness. Remote sensing technical developments, however, take time to shift toward a state of operational readiness for monitoring the progress of NBS in place (e.g. green NBS growth rate, their changes and effectiveness through time). More research is required to develop a holistic approach, which could routinely and continually monitor the performance of NBS over a large scale of intervention. This performance evaluation could increase the ecological and socio-economic benefits of NBS, and also create high levels of their acceptance and confidence by overcoming potential scepticism of NBS implementations

    Nature-based solutions efficiency evaluation against natural hazards: modelling methods, advantages and limitations

    Get PDF
    Nature-based solutions (NBS) for hydro-meteorological risks (HMRs) reduction and management are becoming increasingly popular, but challenges such as the lack of well-recognised standard methodologies to evaluate their performance and upscale their implementation remain. We systematically evaluate the current state-of-the art on the models and tools that are utilised for the optimum allocation, design and efficiency evaluation of NBS for five HMRs (flooding, droughts, heatwaves, landslides, and storm surges and coastal erosion). We found that methods to assess the complex issue of NBS efficiency and cost-benefits analysis are still in the development stage and they have only been implemented through the methodologies developed for other purposes such as fluid dynamics models in micro and catchment scale contexts. Of the reviewed numerical models and tools MIKE-SHE, SWMM (for floods), ParFlow-TREES, ACRU, SIMGRO (for droughts), WRF, ENVI-met (for heatwaves), FUNWAVE-TVD, BROOK90 (for landslides), TELEMAC and ADCIRC (for storm surges) are more flexible to evaluate the performance and effectiveness of specific NBS such as wetlands, ponds, trees, parks, grass, green roof/walls, tree roots, vegetations, coral reefs, mangroves, sea grasses, oyster reefs, sea salt marshes, sandy beaches and dunes. We conclude that the models and tools that are capable of assessing the multiple benefits, particularly the performance and cost-effectiveness of NBS for HMR reduction and management are not readily available. Thus, our synthesis of modelling methods can facilitate their selection that can maximise opportunities and refute the current political hesitation of NBS deployment compared with grey solutions for HMR management but also for the provision of a wide range of social and economic co-benefits. However, there is still a need for bespoke modelling tools that can holistically assess the various components of NBS from an HMR reduction and management perspective. Such tools can facilitate impact assessment modelling under different NBS scenarios to build a solid evidence base for upscaling and replicating the implementation of NBS

    Towards an operationalisation of nature-based solutions for natural hazards

    Get PDF
    Nature-based solutions (NBS) are being promoted as adaptive measures against predicted increasing hydrometeorological hazards (HMHs), such as heatwaves and floods which have already caused significant loss of life and economic damage across the globe. However, the underpinning factors such as policy framework, end-users' interests and participation for NBS design and operationalisation are yet to be established. We discuss the operationalisation and implementation processes of NBS by means of a novel concept of Open-Air Laboratories (OAL) for its wider acceptance. The design and implementation of environmentally, economically, technically and socio-culturally sustainable NBS require inter- and transdisciplinary approaches which could be achieved by fostering co-creation processes by engaging stakeholders across various sectors and levels, inspiring more effective use of skills, diverse knowledge, manpower and resources, and connecting and harmonising the adaptation aims. The OAL serves as a benchmark for NBS upscaling, replication and exploitation in policy-making process through monitoring by field measurement, evaluation by key performance indicators and building solid evidence on their short- and long-term multiple benefits in different climatic, environmental and socio-economic conditions, thereby alleviating the challenges of political resistance, financial barriers and lack of knowledge. We conclude that holistic management of HMHs by effective use of NBS can be achieved with standard compliant data for replicating and monitoring NBS in OALs, knowledge about policy silos and interaction between research communities and end-users. Further research is needed for multi-risk analysis of HMHs and inclusion of NBS into policy frameworks, adaptable at local, regional and national scales leading to modification in the prevalent guidelines related to HMHs. The findings of this work can be used for developing synergies between current policy frameworks, scientific research and practical implementation of NBS in Europe and beyond for its wider acceptance

    A review of hydro-meteorological hazard, vulnerability, and risk assessment frameworks and indicators in the context of nature-based solutions

    Get PDF
    Nature-based solutions (NBS) are increasingly being implemented as suitable approaches for reducing vulnerability and risk of social-ecological systems (SES) to hydro-meteorological hazards. Understanding vulnerability and risk of SES is crucial in order to design and implement NBS projects appropriately. A systematic literature review was carried out to examine the suitability of, or gaps in, existing frameworks for vulnerability and risk assessment of SES to hydro-meteorological hazards. The review confirms that very few frameworks have been developed in the context of NBS. Most of the frameworks have emphasised social systems over ecological systems. Furthermore, they have not explicitly considered the temporal dimension of risk reduction measures. The study proposes an indicator-based vulnerability and risk assessment framework in the context of NBS (VR-NBS) that addresses both the above limitations and considers established NBS principles. The framework aims to allow for a better consideration of the multiple benefits afforded by NBS and which impact all the dimensions of risk. A list of 135 indicators is identified through literature review and surveys in NBS project sites. This list is composed of indicators representing the social sub-system (61% of total indicators) and the ecological sub-system (39% of total indicators). The list will act as a reference indicator library in the context of NBS projects and will be regularly updated as lessons are learnt. While the proposed VR-NBS framework is developed considering hydro-meteorological hazards and NBS, it can be adapted for other natural hazards and different types of risk reduction measures

    Towards operationalisation of nature-based solutions for natural hazards

    Get PDF
    Nature-based solutions (NBS) are being promoted as adaptive measures against predicted increasing hydrometeorological hazards (HMHs), such as heatwaves and floods which have already caused significant loss of life and economic damage across the globe. However, the underpinning factors such as policy framework, end-users' interests and participation for NBS design and operationalisation are yet to be established. We discuss the operationalisation and implementation processes of NBS by means of a novel concept of Open-Air Laboratories (OAL) for its wider acceptance. The design and implementation of environmentally, economically, technically and socio-culturally sustainable NBS require inter- and transdisciplinary approaches which could be achieved by fostering co-creation processes by engaging stakeholders across various sectors and levels, inspiring more effective use of skills, diverse knowledge, manpower and resources, and connecting and harmonising the adaptation aims. The OAL serves as a benchmark for NBS upscaling, replication and exploitation in policy-making process through monitoring by field measurement, evaluation by key performance indicators and building solid evidence on their short- and long-term multiple benefits in different climatic, environmental and socio-economic conditions, thereby alleviating the challenges of political resistance, financial barriers and lack of knowledge. We conclude that holistic management of HMHs by effective use of NBS can be achieved with standard compliant data for replicating and monitoring NBS in OALs, knowledge about policy silos and interaction between research communities and end-users. Further research is needed for multi-risk analysis of HMHs and inclusion of NBS into policy frameworks, adaptable at local, regional and national scales leading to modification in the prevalent guidelines related to HMHs. The findings of this work can be used for developing synergies between current policy frameworks, scientific research and practical implementation of NBS in Europe and beyond for its wider acceptance

    A primary school driven initiative to influence commuting style for dropping-off and picking-up of pupils

    No full text
    The use of cars for drop-off and pick-up of pupils from schools is a potential cause of pollution hotspots at school premises. Employing a joint execution of smart sensing technology and citizen science approach, a primary school took an initiative to co-design a study with local community and researchers to generate data and provide information to understand the impact on pollution levels and identify possible mitigation measures. This study was aimed to assess the hotspots of vehicle-generated particulate matter ≤2.5 μm (PM2.5) and ≤ 10 μm (PM10) at defined drop-off/pick-up points and its ingress into a nearby naturally ventilated primary school classroom. Five different locations were selected inside school premises for measurements during two peak hours: morning (MP; 0730-0930 h; local time) and evening (EP; 1400-1600 h) peak hours, and off-peak (OP; 1100-1300 h) hours for comparison. These represent PM measurements at the main road, pick-up point at the adjoining road, drop-off point, a classroom, and the school playground. Additional measurements of carbon dioxide (CO2) were taken simultaneously inside and outside (drop-off point) the classroom to understand its build-up and ingress of outdoor PM. The results indicate nearly a three-fold increase in the concentrations of fine particles (PM2.5) during drop-off hours compared to off-peak hours indicated the dominant contribution of car queuing in the school premises. Coarse particles (PM2.5–10) were prevalent in the school playground, while the contribution of fine particles as a result of traffic congestion became more pronounced during drop-off hours. In the naturally ventilated classroom, the changes in indoor PM2.5 concentrations during both peak hours (0.58 < R2 < 0.67) were followed by the outdoor concentration at the drop-off point. This initiative resulted in valuable information that might be used to influence school commuting style and raise other important issues such as the generally fairly high PM2.5 concentrations in the playground and future classroom ventilation plans
    corecore